
How-to Calculate CAN Checksums in PMU
Document version: 1.0
Software version: 120.0 or later
Published on: 13 January 2026

 How-to Calculate CAN Checksums in PMU

1. Description
1. Introduction

With PMU Client and Firmware version 120.0, a new module was introduced to allow the definition

of custom checksums.

The module enables calculation of a checksum that is appended to the CAN frame at a selected

position.

2. CANBus Export Window Description

Only the new elements that have been added to the CANBus Export window are described below.

The remaining elements are described in the PMU Manual: https://www.ecumaster.com/files/

PMU/PMU_Manual.pdf

Endian setting (1)

An option for selecting byte order (Endian) has been added.

The option provides three possible settings:

• BIG - big-endian byte order (Motorola).

• little - little-endian byte order (Intel).

• mixed - legacy behavior that allows selecting little-endian or big-endian byte order for each

channel individually, instead of applying it to the entire CAN frame.

Warning:

Selecting the mixed option disables the checksum calculation feature.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 2/22

https://www.ecumaster.com/files/PMU/PMU_Manual.pdf
https://www.ecumaster.com/files/PMU/PMU_Manual.pdf

 How-to Calculate CAN Checksums in PMU

The default Endian setting is BIG.

When importing a project from older version that contains CANBus Export elements,

the Endian setting is automatically changed to mixed in order to maintain backward

compatibility.

Tx Counter (2)

Allows selection of the size of the automatically transmitted frame counter.

The maximum counter size is 8 bits (range 0–255).

The following counter sizes are available:

• 8-bit (0–255)

• 4-bit (0–15)

• 2-bit (0–3)

• custom

In custom mode, the user can define the counter operating range by specifying:

• Start value

• End value

If the End value is smaller than the Start value, the counter counts down.

Edit Button (Checksum Channels) (3)

The Edit button is visible when 8-bit checksum or 16-bit checksum is selected for a given

channel (marked as number 3 in the figure).

Pressing the Edit button opens the checksum editing window (described in detail later - see “4.

Checksum Editing”).

Available Channel Types (4)

• 8-bit signed/unsigned - the channel is transmitted as an 8-bit signed or unsigned value.

• 16-bit signed/unsigned - the channel is transmitted as a 16-bit signed or unsigned value.

• custom - allows defining the number of bits used to transmit the channel and selecting the

data type (signed or unsigned).

• 8-bit/16-bit checksum - the transmitted value is the checksum defined by the user.

3. Data Placement in the CAN Frame

Data in the CAN frame is arranged from byte 0 to byte 7.

• Eight 8-bit channels occupy bytes 0 through 7 sequentially.

• Four 16-bit channels occupy the following byte pairs:

(0,1), (2,3), (4,5), (6,7), etc.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 3/22

 How-to Calculate CAN Checksums in PMU

4. Checksum Editing

Selecting 8-bit checksum or 16-bit checksum enables checksum editing.

In the checksum editing window, a list of checksum slots is displayed.

Each slot represents an operation performed on the accumulator.

The checksum calculation is always read from top to bottom, following the operation order.

• Add - adds a new operation.

• Delete - deletes the selected operation.

• Edit - edits the selected operation.

• Edit table - edits a special table of constant values defined by the user.

• Move Up / Move Down - changes the execution order of operations.

• Delete All - removes all operations.

5. Custom Bit-Length Channels

If a custom channel uses a bit length that is not a multiple of 8, all channels that follow the custom

channel are placed immediately after its data, without byte alignment.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 4/22

 How-to Calculate CAN Checksums in PMU

Example 1:

With the data arranged as shown in the figure above, the CAN frame layout will be as follows:

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 5/22

 How-to Calculate CAN Checksums in PMU

Example 2:

Changing the byte order (Endian) from BIG to little.

With the data arranged as shown in the figure above, the CAN frame layout will be as follows:

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 6/22

 How-to Calculate CAN Checksums in PMU

6. Checksum byte alignment

The checksum must be byte-aligned, meaning its start bit must be 0 or a multiple of 8.

If the checksum is not byte-aligned, the channel text will turn red, and an explanatory message

will be shown after clicking OK.

Example 1:

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 7/22

 How-to Calculate CAN Checksums in PMU

To meet the checksum byte-alignment requirement, 5 bits of padding are applied at Channel #6.

For the CAN Bus Export settings described above, the following CAN frame layout is used:

7. Creating and Editing Operations

In the operation creation and editing window, the user selects an Action and an Operation available

for that Action.

The Action defines how the accumulator is modified after the operation is executed.

Available Actions

• apply/set (=) - the result of the operation is assigned as the new accumulator value.

• add (+) - the result of the operation is added to the accumulator.

• xor (^) - the result of the operation is combined with the current accumulator value using

the XOR operation, forming a new accumulator value.

All values can be entered in decimal or hexadecimal format.

Hexadecimal values must be prefixed with 0x.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 8/22

 How-to Calculate CAN Checksums in PMU

Depending on the selected Operation, values are displayed in:

• decimal format

• hexadecimal format

• or mixed format, for example: 1 (0x01)

Operations available for add and xor Actions

• constant value - a constant value is added to the accumulator or XORed with it.

• sum of data bytes - all bytes of the CAN frame, except the bytes reserved for the checksum,

are summed.

The resulting value is then added to or XORed with the accumulator.

• xor of data bytes - all bytes of the CAN frame, except the bytes reserved for the checksum,

are XORed together

(byte0 XOR byte1 XOR byte2 … XOR byteX).

The resulting value is then added to or XORed with the accumulator.

• crc8 of data bytes

The crc8 of data bytes operation calculates a CRC-8 checksum from all data bytes except

the checksum bytes.

The operation allows configuring algorithm parameters, enabling implementation of most

common CRC-8 variants.

The result is added to or XORed with the accumulator.

Poly - polynomial used during CRC calculation.

 Defines how each subsequent data byte affects the intermediate and final CRC result.

Seed - initial CRC accumulator value from which CRC calculation starts.

Final XOR - value used to XOR the final CRC calculation result.

Reflection in\out

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 9/22

 How-to Calculate CAN Checksums in PMU

◦ Reflection in - reverses the bit order in each input byte before CRC calculation.

◦ Reflection out - reverses the bit order of the final CRC result.

Example:

CRC-8/AUTOSAR

CRC-8/BLUETOOTH

• CAN ID shift left/right by arg - this operation shifts the CAN ID value left or right by a

specified number of bits.

A left bit shift corresponds to multiplication by a power of 2.

A right bit shift corresponds to division by a power of 2.

argument Shift left << Shift right >>

0 CAN ID *1 CAN ID /1

1 CAN ID *2 CAN ID /2

2 CAN ID *4 CAN ID /4

3 CAN ID *8 CAN ID /8

4 CAN ID *16 CAN ID /16

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 10/22

 How-to Calculate CAN Checksums in PMU

argument Shift left << Shift right >>

5 CAN ID *32 CAN ID /32

6 CAN ID *64 CAN ID /64

7 CAN ID *128 CAN ID /128

8 CAN ID *256 CAN ID /256

The result is added to or XORed with the accumulator.

• counter shift left/right by arg - this operation is analogous to CAN ID shift, with the

difference that the bit shift is performed on the current transmitted frame counter value.

The result is added to or XORed with the accumulator.

• acc shift left/right by arg - this operation is analogous to CAN ID shift, with the difference

that the bit shift is performed on the current accumulator value.

The result is added to or XORed with the accumulator.

• (counter + arg1) * arg2 - this operation adds value arg1 to the current counter value and

then multiplies the result by arg2.

The operation can also be used:

◦ to only add a value to the counter (arg2 = 1),

◦ to only multiply the counter value (arg1 = 0).

The result is added to or XORed with the accumulator.

• table value[counter] - the result of the operation is a value taken from the lookup table

(described in detail in “7. Lookup Table Editing”), selected based on the current transmitted

frame counter value.

Table index calculation:

◦ When the counter counts up:

index = (counter value − counter start value) modulo 16

◦ When the counter counts down:

index = (counter start value − counter value) modulo 16

The result is added to or XORed with the accumulator.

Operations available for apply/set Action

• crc8 of accumulator - calculates CRC-8 from the current accumulator value.

The result is directly assigned to the accumulator.

• crc8 of table val(seed: acc) - calculates CRC-8 from the lookup table value, using the

current accumulator value as the initial seed.

The result is assigned to the accumulator.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 11/22

 How-to Calculate CAN Checksums in PMU

• mask - performs bit masking on the current accumulator value.

Example:

acc = 0x12

To preserve only the four least significant bits of the accumulator, bit masking using the

AND operation is performed.

acc = (acc)0x12 & (mask)0x0F

acc = 0x02

• acc shift left/right by arg - performs a bit shift on the accumulator value and assigns the

result directly to the accumulator.

8. Lookup Table Editing

Pressing the Edit table button in the checksum editor allows defining up to 16 lookup table

values.

The maximum table size is 16 elements, each with a value in the range 0–255.

If the selected counter operating range is smaller than 16, the table size is automatically limited

to the difference between the counter Start and End values.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 12/22

 How-to Calculate CAN Checksums in PMU

9. How to Interpret the Created Checksum

Example:

Byte values: byte0 = 1, byte1 = 5, byte2 = 50, byte3 = 0, byte4 = 15, byte5 = 2

Counter value: 2

The checksum calculation is always read from top to bottom, following the operation order.

• acc = 0

The initial accumulator value is always 0.

• acc = acc + sum of data bytes,

Action: add, Operation: sum of data bytes

The sum of the byte values (b0 + b1 + b2 + b3 + b4 + b5) is added to the accumulator:

acc = 1 + 5 + 50 + 0 + 15 + 2 = 73

• acc = acc + CAN ID (0x0123) shift right by >> 3

Action: add, Operation: CAN ID shift right by arg

The CAN ID identifier has the value 0x123.

A right bit shift by 3 positions corresponds to division by 8:

0x123 >> 3 that is 0x123 / 8 = 0x24 = 36 (decimal)

acc = 73 + 36 = 109

• acc = acc + counter shift left by << 3

Action: add, Operation: counter shift left by arg

The current counter value is 2.

A left bit shift by 3 positions corresponds to multiplication by 8:

counter value = 2 therefore 2 << 3 = 2 * 8 = 16

acc = 109 + 16 = 125

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 13/22

 How-to Calculate CAN Checksums in PMU

• acc = acc & (0x07FF)

Action: apply/set, Operation: mask

A bit masking operation is performed on the accumulator:

acc = 125 (0x71) & 0x07FF

acc = 125

checksum = acc = 125

2. Examples
Example 1 – Checksum Creation

The goal is to calculate an 8-bit checksum according to the following equation, using little-endian:

checksum = (byte0 + byte1 + byte2 + byte3 + byte4 + byte5 + byte6) XOR 0x55

• The first required operation is:

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 14/22

 How-to Calculate CAN Checksums in PMU

After this operation, the accumulator value is:

acc = byte0 + byte1 + byte2 + byte3 + byte4 + byte5 + byte6

• Second required operation:

After this operation, the accumulator value is:

acc = (byte0 + byte1 + byte2 + byte3 + byte4 + byte5 + byte6) XOR 0x55

• Final result

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 15/22

 How-to Calculate CAN Checksums in PMU

The resulting CAN frame layout is shown below:

Example 2 – Checksum Creation

The goal is to calculate a checksum according to the following equation:

checksum = byte0 + byte1 + byte2 + byte3 + byte4 + byte5 + (CAN ID / 4) + (counter * 4)

Additionally:

• the checksum length is 9 bits,

• the checksum is placed in bytes 6 and 7 of the CAN frame,

• in byte 6, the three most significant bits are used to transmit the frame counter.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 16/22

 How-to Calculate CAN Checksums in PMU

• The first required operation is:

After this operation, the accumulator value is:

acc = byte0 + byte1 + byte2 + byte3 + byte4 + byte5

• The next required operation is:

After this operation, the accumulator value is:

acc = (byte0 + byte1 + byte2 + byte3 + byte4 + byte5) + (CAN ID / 4)

• Next, the counter value is multiplied using a bit shift operation.

The accumulator value after this operation is:

acc = (byte0 + byte1 + byte2 + byte3 + byte4 + byte5) + (CAN ID / 4) + (counter * 4)

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 17/22

 How-to Calculate CAN Checksums in PMU

• The checksum length is 9 bits, therefore the mask used for masking the accumulator is

0x1FF (binary: 0001 1111 1111).

• Finally, the counter value must be placed in the three most significant bits of the checksum

to meet the original requirement: “In byte 6, the three most significant bits are used to

transmit the frame counter.”

Final result:

The layout of the CAN frame prepared in this way is shown below.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 18/22

 How-to Calculate CAN Checksums in PMU

Example 3 – Checksum Creation

The expected CRC-8 checksum with polynomial 0x1D and initial value 0x33 is placed in byte 0

of the CAN frame. Byte 1 contains the transmitted frame counter, counting in the range from 0

to 15 (4-bit counter).

The total frame length is 4 bytes.

Only one operation is required to calculate this checksum.

The CRC-8 checksum is calculated from three bytes: byte1, byte2, and byte3.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 19/22

 How-to Calculate CAN Checksums in PMU

The resulting CAN frame layout is shown below.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 20/22

 How-to Calculate CAN Checksums in PMU

Example 4 – Checksum Creation

The expected checksum complies with the CRC-8/AUTOSAR algorithm

(poly = 0x2F, seed = 0xFF, finalXor = 0xFF),

with an additional byte taken from the lookup table.

The checksum is calculated from eight bytes, where the eighth byte comes from the lookup table:

CRC-8(byte0, byte1, byte2, byte3, byte4, byte5, byte6, lookupTableValue)

To calculate such a checksum, two operations are required.

• First step

In the first step, the CRC-8 checksum is calculated for bytes byte0–byte6.

Since the additional eighth byte from the lookup table is not yet included, the finalXor

parameter is not applied and is set to 0x00.

The obtained result is added to the accumulator.

• Second step:

In the second step, the CRC-8 checksum is calculated for the missing byte taken from the

lookup table.

The current accumulator value (acc) is used as the initial value (seed).

Finally, a Final xor operation with the value 0xFF is performed, in accordance with the CRC-8/

AUTOSAR algorithm.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 21/22

 How-to Calculate CAN Checksums in PMU

3. Document history
Version Date Changes

1.0 2026.01.13 Initial release

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 22/22

	How-to Calculate CAN Checksums in PMU
	1. Description
	2. Examples
	3. Document history

