@ www.ecumaster.com /ecumaster_official f /ecumaster

HOW-TO

How-to Calculate CAN Checksums in PMU

Document version: 1.0
Software version: 120.0 or later
Published on: 13 January 2026

ECUMASTER How-to Calculate CAN Checksums in PMU

1. Description

1. Introduction

With PMU Client and Firmware version 120.0, a new module was introduced to allow the definition
of custom checksums.

The module enables calculation of a checksum that is appended to the CAN frame at a selected

position.

2. CANBus Export Window Description

Only the new elements that have been added to the CANBus Export window are described below.
The remaining elements are described in the PMU Manual: https://www.ecumaster.com/files/
PMU/PMU_Manual.pdf

b+ New CANbus Export X
vdl e
MName: x_export]

CAMbus: CANZ ~ ID (hex): (%0000 Z Standard ~ DLC: 8

Transmit mode: Cycle ~ Frequency [Hz]: 10 CAN2 band usage: 10/500 frames

G ~ Txcounter B8-bit ~ Start 0 End: 255
2

1 Endian: B

Channel #0: 8-bit unsigned ~
Channel #1: 8-bit unsigned ~

Channel #2: 8-bit unsigned ~

Channel #4: 8-bit unsigned ~
Channel #3: 8-bit unsigned ~

4
4
4

Channel #3: 8-bit unsigned ~ - ™1 ~
4
.
Channel #6: 8-bit unsigned ~ 1
1

Channel #7: | 8-bit checksum Edit

8-bit unsigned

&-bit signed Save .CANX File
16-bit unsigned 4

16-bit signed

(custem) oK] Cancel
B-bit checksum
oo 16-bit checksum m T

Endian setting (1)
An option for selecting byte order (Endian) has been added.
The option provides three possible settings:
* BIG - big-endian byte order (Motorola).
« little - little-endian byte order (Intel).
» mixed - legacy behavior that allows selecting little-endian or big-endian byte order for each
channel individually, instead of applying it to the entire CAN frame.

Warning:

Selecting the mixed option disables the checksum calculation feature.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 2/22

https://www.ecumaster.com/files/PMU/PMU_Manual.pdf
https://www.ecumaster.com/files/PMU/PMU_Manual.pdf

ECUMASTER How-to Calculate CAN Checksums in PMU

The default Endian setting is BIG.

When importing a project from older version that contains CANBus Export elements,
the Endian setting is automatically changed to mixed in order to maintain backward
compatibility.

Tx Counter (2)
Allows selection of the size of the automatically transmitted frame counter.
The maximum counter size is 8 bits (range 0—-255).
The following counter sizes are available:
« 8-bit (0-255)
* 4-bit (0-15)
« 2-bit (0-3)
* custom
In custom mode, the user can define the counter operating range by specifying:
« Start value
* End value

If the End value is smaller than the Start value, the counter counts down.

Edit Button (Checksum Channels) (3)

The Edit button is visible when 8-bit checksum or 16-bit checksum is selected for a given
channel (marked as number 3 in the figure).

Pressing the Edit button opens the checksum editing window (described in detail later - see “4.
Checksum Editing”).

Available Channel Types (4)
« 8-bit signed/unsigned - the channel is transmitted as an 8-bit signed or unsigned value.
+ 16-bit signed/unsigned - the channel is transmitted as a 16-bit signed or unsigned value.
- custom - allows defining the number of bits used to transmit the channel and selecting the
data type (signed or unsigned).
« 8-bit/16-bit checksum - the transmitted value is the checksum defined by the user.

3. Data Placement in the CAN Frame

Data in the CAN frame is arranged from byte 0 to byte 7.
« Eight 8-bit channels occupy bytes 0 through 7 sequentially.
« Four 16-bit channels occupy the following byte pairs:
(0,1), (2,3), (4,5), (6,7), etc.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 3/22

ECUMASTER How-to Calculate CAN Checksums in PMU

4. Checksum Editing
Selecting 8-bit checksum or 16-bit checksum enables checksum editing.

| Edit checksum X |

f acc=0 |
| |acc = acc + sum of data bytes Add l
|| acc = acc + CAN ID(0x123) shift left by («<<) 2 Del
llacc = acc + crcd of frame bytes, p=0x1D, s=0xFF, fuor=0:00 e
|
Edit
Maove Up
Edit table
Delete All
checksum = acc
OK Cancel

In the checksum editing window, a list of checksum slots is displayed.
Each slot represents an operation performed on the accumulator.
The checksum calculation is always read from top to bottom, following the operation order.
» Add - adds a new operation.
* Delete - deletes the selected operation.
« Edit - edits the selected operation.
- Edit table - edits a special table of constant values defined by the user.
« Move Up / Move Down - changes the execution order of operations.
* Delete All - removes all operations.

5. Custom Bit-Length Channels

If acustom channel uses a bit length that is not a multiple of 8, all channels that follow the custom
channel are placed immediately after its data, without byte alignment.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 4/22

Example 1:

}+4 Edit CAMbus Export X
&dl e
WET TS0 export
CANbus: CANZ ~ ID (hex): Ox0123 Standard -~ DLC: 8 %
Transmit mode: Cycle ~ Frequency [Hz]: % CANZ band usage: 104300 frames
Endian: BIG w Txcounten 8-bit End: 233
Channel #0: 8-bit signed ~ n_channeld |_| "1 i
Channel #1: 16-bit unsigned ~ n_channell |_| *1 v
Channel #2. 3-bit unsigned ~ ~ n_channel2 |_| *1 ~
Channel #3: 8-bit unsigned ~ n_channel3 |_| "1 v
Channel #4: 8-bit unsigned ~ n_channeld |_| "1 ~
Channel #5: 8-bit unsigned ~ n_channel3 |_| "1 e
Channel #6: 8-bitunsigned ~ n_channelg (..][= v
Channel #7: B-bit unsigned |_| il ~
| Save CANXFile |

| | Cancel |

¥

With the data arranged as shown in the figure above, the CAN frame layout will be as follows:

Channels:

BYTE BITS
7 6 4 3 2 1 0
0
1
2
3
4
5
6
- 60 59 58 57 56

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 5/22

Example 2:
Changing the byte order (Endian) from BIG to little.

|»§£ Edit CANbus Export X
Gd e
Name: x_export1
CAMNbus: CAN2 ~ 1D (hex): 0x0123 i Standard ~ DLC: 8 i
Transmit mode: Cycle ~ Frequency [Hz]: 10 i CANZ2 band usage: 20/500 frames
Endian: little ~ Txcounter: 8-bit ~ Start: 0 : End: 255 :
Channel #0: 8-bit signed ~ n_channel0 |:‘ *1 i
Channel #1: 16-bit unsigned ~ n_channel1 |:‘ *1 i
Channel #2: 3-bitunsigned ~ ~ n_channel2 |:‘ *1 e
Channel #3: 8-bit unsigned ~ n_channel3 |:‘ *1 i
Channel #4: 8-bit unsigned ~ n_channel4 |:‘ *1 i
Channel #5: 8-bit unsigned ~ ~ n_channel5 |:‘ *1 &
Channel #6: 8-bit unsigned v~ n_channel6 |:‘ €] v
Channel #7: 8-bit unsigned v |:‘ *1 i

‘ Save .CANX File ‘

| oK ‘ ‘ Cancel ‘

With the data arranged as shown in the figure above, the CAN frame layout will be as follows:

Channels: BYTE BITS

63 62 61 60 59

N (e (W N (e O

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 6/22

ECUMASTER

How-to Calculate CAN Checksums in PMU

6. Checksum byte alignment

The checksum must be byte-aligned, meaning its start bit must be 0 or a multiple of 8.

If the checksum is not byte-aligned, the channel text will turn red, and an explanatory message

will be shown after clicking OK.

ki
Gdl @
MName: x_export]
CAMbus: CANZ -~ ID (hex): (0123 Z Standard ~ DLC: 8 =
Transmit mode: Cycle ~ Frequency [Hz]: 10 2 CAN2 band usage: 107300 frames
Endian: BIG ~ Txcounter custom -~ Stark 0 ~ End: 7
Channel #0: 1-bit unsigned « n_channell w | |* ~
Channel #1: 8-bit checksum — W™ Edit
Channel #2: 8-bit unsigned ~ n_channel2 w ™1 ~
Channel #3: 2-bit unsigned ~ n_channel3 w | |*1 ~
Channel
Channel . .
Checksum must start at a full byte (multiple of 8), Currently at bit 1.
Channel Please insert 7 bits of padding before the checksum.
Channel
Save .CANX File
OK Cancel
Example 1:
|-->§3
H
Mame: x_Export2
CAMbus: CAMZ -~ ID(hex): 00368 = Standard -~ DLC: 8 =

Transmit mode: Cycle

-

~ Frequency [Hz]: 1 CANZ band usage: 2/500 frames

Endian: BIG ~ Txcounter 2-hit ~ | Start: 0 End: 3
Channel #0: 16-bit unsigned ~ n_channeld - | ™1 w
Channel #1: 8-bit unsigned ~ n_channell - | ™1 w
Channel #2: 8-bit unsigned ~ n_channel2 - | ™1 w
Channel #3: 8-bit unsigned ~ n_channel3 - | ™1 w
Channel #4: 8-bit unsigned ~ n_channel4 - | ™1 w
Channel #3: 8-bit unsigned ~ n_channel4 - | ™1 w
Channel #& 3-bit unsigned ~ n_channel§ - | ™1 w
Channel #7: 2-bit checksum - ™1 Edit

Save .CAMNX File

oK

Cancel

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later

7/22

ECUMASTER

How-to Calculate CAN Checksums in PMU

To meet the checksum byte-alignment requirement, 5 bits of padding are applied at Channel #6.
For the CAN Bus Export settings described above, the following CAN frame layout is used:

Channels: BYTEBITS
7 6 5 4 3 2 1 0
Z 0
n_channel0 0 MSB 6 5 4 3 2 1 <8
15 5
n_channell 1 [t 13 12 11 10 9 <
31 24
n_channel3 3 ven | E 29 28 27 26 25 o
) 32
n_channel4 4 | msg | 38 37 36 35 34 33 <
47 45
n_channel5 5 vem | 28 '8 a4 43 42 a1 40
55
6 54 53 52 51 50 49 a8
MSB
63 62 61 60 59 58 57 26
16bit checksum 7 g

7. Creating and Editing Operations

Action: add (+)

Operation: crcB of data bytes

Paly (xd3

Seed (w00

Final xor w00

Reflection in\out [

ar 4r 4k

Cancel

In the operation creation and editing window, the user selects an Action and an Operation available

for that Action.

The Action defines how the accumulator is modified after the operation is executed.

Available Actions

« apply/set (=) - the result of the operation is assigned as the new accumulator value.
« add (+) - the result of the operation is added to the accumulator.

« xor (") - the result of the operation is combined with the current accumulator value using

the XOR operation, forming a new accumulator value.

All values can be entered in decimal or hexadecimal format.

Hexadecimal values must be prefixed with Ox.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later

8/22

ECUMASTER How-to Calculate CAN Checksums in PMU

Depending on the selected Operation, values are displayed in:
« decimal format
« hexadecimal format

« or mixed format, for example: 1 (0x01)

Operations available for add and xor Actions

 constant value - a constant value is added to the accumulator or XORed with it.

- sum of data bytes - all bytes of the CAN frame, except the bytes reserved for the checksum,
are summed.
The resulting value is then added to or XORed with the accumulator.

- xor of data bytes - all bytes of the CAN frame, except the bytes reserved for the checksum,
are XORed together
(byte0 XOR byte1 XOR byte2 ... XOR byteX).
The resulting value is then added to or XORed with the accumulator.

* crc8 of data bytes

Action: add (+) v
Operation: crc8 of frame data v

Poly 0x45

Seed 0x00

4dr 4 » 4>

Final xor 0x00

Reflection invout (]

OK } Cancel

The crc8 of data bytes operation calculates a CRC-8 checksum from all data bytes except
the checksum bytes.
The operation allows configuring algorithm parameters, enabling implementation of most

common CRC-8 variants.

The result is added to or XORed with the accumulator.
Poly - polynomial used during CRC calculation.
Defines how each subsequent data byte affects the intermediate and final CRC result.
Seed - initial CRC accumulator value from which CRC calculation starts.
Final XOR - value used to XOR the final CRC calculation result.
Reflection in\out

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 9/22

ECUMASTER

How-to Calculate CAN Checksums in PMU

o Reflection in - reverses the bit order in each input byte before CRC calculation.

o Reflection out - reverses the bit order of the final CRC result.

Example:
CRC-8/AUTOSAR

CRC-8/BLUETOOTH

Action: add (+) ~

Operation: crc8 of data bytes &

Poly x2F =
Seed (xFF =
Final xor OxFF =
Reflection inout I:I
oK |
Action: add (+) ~

Operation: crc8 of data bytes &

Poly 0xA7

Seed 0x00

Final xor 000

Reflection in\out [

o)

Cancel

« CAN ID shift left/right by arg - this operation shifts the CAN ID value left or right by a
specified number of bits.
A left bit shift corresponds to multiplication by a power of 2.
A right bit shift corresponds to division by a power of 2.

argument Shift left << Shift right >>
0 CAN ID *1 CANID /1

1 CAN ID *2 CANID /2

2 CANID *4 CANID /4

3 CANID *8 CANID /8

4 CANID *16 CANID /16

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later

10/22

ECUMASTER How-to Calculate CAN Checksums in PMU

argument Shift left << Shift right >>
5 CAN ID *32 CAN ID /32
6 CAN ID *64 CAN ID /64
7 CAN ID *128 CANID /128
8 CAN ID *256 CAN ID /256

The result is added to or XORed with the accumulator.

e counter shift left/right by arg - this operation is analogous to CAN ID shift, with the
difference that the bit shift is performed on the current transmitted frame counter value.
The result is added to or XORed with the accumulator.

« acc shift left/right by arg - this operation is analogous to CAN ID shift, with the difference
that the bit shift is performed on the current accumulator value.

The result is added to or XORed with the accumulator.

* (counter + argl) * arg2 - this operation adds value argl to the current counter value and

then multiplies the result by arg?2.
The operation can also be used:

> to only add a value to the counter (arg2 = 1),

> to only multiply the counter value (argl = 0).
The result is added to or XORed with the accumulator.

- table value[counter] - the result of the operation is a value taken from the lookup table
(described in detail in “7. Lookup Table Editing”), selected based on the current transmitted
frame counter value.

Table index calculation:
> When the counter counts up:
index = (counter value - counter start value) modulo 16
> When the counter counts down:
index = (counter start value - counter value) modulo 16

The result is added to or XORed with the accumulator.

Operations available for apply/set Action
« crc8 of accumulator - calculates CRC-8 from the current accumulator value.
The result is directly assigned to the accumulator.
- crc8 of table val(seed: acc) - calculates CRC-8 from the lookup table value, using the
current accumulator value as the initial seed.

The result is assigned to the accumulator.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 11/22

ECUMASTER

How-to Calculate CAN Checksums in PMU

* mask - performs bit masking on the current accumulator value.

Example:
acc = 0x12

To preserve only the four least significant bits of the accumulator, bit masking using the

AND operation is performed.
acc = (acc)0x12 & (mask)0x0F
acc = 0x02

e acc shift left/right by arg - performs a bit shift on the accumulator value and assigns the

result directly to the accumulator.

8. Lookup Table Editing

Pressing the Edit table button in the checksum editor allows defining up to 16 lookup table

values.

The maximum table size is 16 elements, each with a value in the range 0—255.

If the selected counter operating range is smaller than 16, the table size is automatically limited

to the difference between the counter Start and End values.

Value 0
Value 1
Value 2
Value 3
Value 4
Value 5
Value 6
Value 7
Value 8
Value 9
Value 10
Value 11
Value 12
Value 13
Value 14
Value 15

OK

19 (0x13)
20 (0x14)
21 (0x15)
22 (0x16)
23 (0x17)
24 (0x18)
25 (0x19)
26 (0x1A)
27 (0x1B)
28 (0x1C)
29 (0x1D)
30 (0x1E)
31 (0x1F)
32 (0x20)
33 (0x21)
34 (0x22)

Cancel

Ar 4P 4P 4F CF AP 4F 4F 4> AP 4P 4 Cr 4P 4> 4>

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later

12/22

ECUMASTER How-to Calculate CAN Checksums in PMU

9. How to Interpret the Created Checksum

Example:

| Edit checksum x|

| acc=10 .
| |acc = acc + sum of data bytes Add l
| |acc = acc + CAN ID{0x123) shift right by (=) 3

| |acc = acc + counter shift left by (=<) 3
' M

Delete

Edit

Move Up

Edit table

Delete All

checksum = acc

0K Cancel

Byte values: byte0 = 1, byte1 = 5, byte2 = 50, byte3 = 0, byte4 = 15, byte5 = 2

Counter value: 2

The checksum calculation is always read from top to bottom, following the operation order.
cacc=0
The initial accumulator value is always 0.
« acc = acc + sum of data bytes,
Action: add, Operation: sum of data bytes
The sum of the byte values (b0 + b1 + b2 + b3 + b4 + b5) is added to the accumulator:
acc=1+5+50+0+15+2=73
- acc = acc + CAN ID (0x0123) shift right by >> 3
Action: add, Operation: CAN ID shift right by arg
The CAN ID identifier has the value 0x123.
A right bit shift by 3 positions corresponds to division by 8:
0x123 >> 3 that is 0x123 / 8 = 0x24 = 36 (decimal)
acc=73+36=109
« acc = acc + counter shift left by << 3
Action: add, Operation: counter shift left by arg
The current counter value is 2.
A left bit shift by 3 positions corresponds to multiplication by 8:
counter value = 2 therefore 2<<3=2*8=16
acc=109+16=125

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 13/22

ECUMASTER

How-to Calculate CAN Checksums in PMU

- acc = acc & (0x07FF)

Action: apply/set, Operation: mask

A bit masking operation is performed on the accumulator:
acc = 125 (0x71) & 0x07FF

acc =125
checksum = acc = 125

2. Examples

Example 1 — Checksum Creation

The goalisto calculate an 8-bit checksum according to the following equation, using little-endian:

checksum = (byte0 + byte1 + byte2 + byte3 + byte4 + byte5 + byte6) XOR 0x55

i

&d e

Mame:

CAMbus:

Transmit mode:

Endian:

Channel #0:

Channel #1:

Channel #2:

Channel #3:

Channel #4:

Channel #3:

Channel #6:

*_export]

CANZ ~ ID (hex): 00123 S Standard ~ DLC: 8

Cycle ~ | Frequency [Hzl: 10 2 CAN2 band usage: 10/500 frames
BIG ~ Txcounter: custom -~ Start: O > End: 7

8-bit unsigned
8-bit unsigned
8-bit unsigned
8-bit unsigned
8-bit unsigned
8-bit unsigned
16-bit checksum

8-bit unsigned

* The first required operation is:

f

~ n_channell
w n_channell

w n_channel2

~ n_channeld

1

1

1
« n_channel3 - || v

=

« n_channels - ||

1

Edit
M

Save (CANX File

oK Cancel
Action: add (+) 2
Operation: sum of data bytes ~
oK Cancel

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later

14/22

ECUMASTER How-to Calculate CAN Checksums in PMU

After this operation, the accumulator value is:
acc = byte0 + byte1 + byte2 + byte3 + byte4 + byte5 + byte6

« Second required operation:

f
Action: xor (%) R
Operation: constant value R
Value: 83 (x33) :
oK Cancel

After this operation, the accumulator value is:
acc = (byte0 + byte1 + byte2 + byte3 + byte4 + byte5 + byte6) XOR 0x55

« Final result

| Edit checksum >
I acc=10
| |acc = acc + sum of data bytes —
il acc = acc xor 85 (0xD055)
| Delete
|
Edit
Move Up
Edit table
Delete All

checksum = acc

0K Cancel

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later

15/22

ECUMASTER

How-to Calculate CAN Checksums in PMU

The resulting CAN frame layout is shown below:

Legend: BYTE BITS
7 6 5 4 3 2 1 0
0
n_channel0 0 7 8 5 4 3 2 1 L
15
n_channell 1 wen | 14 13 12 11 10 9 3
23 16
_ 2 wme | 20| B BT g
n_channel s o ® ® m 7w om L
) 32
n_channel4 4 msg | 38 37 36 35 34 33 e
47 -
n_channel5 5 msg | 46 45 44 43 42 41 Lo
55 13
8-bit checksum 6 MSB 54 53 52 51 50 49 <8
63 56
7 ves | 82 61 60 59 58 57 <8

Example 2 — Checksum Creation

The goal is to calculate a checksum according to the following equation:
checksum = byte0 + byte1 + byte2 + byte3 + byte4 + byte5 + (CAN ID / 4) + (counter * 4)

Additionally:
« the checksum length is 9 bits,
« the checksum is placed in bytes 6 and 7 of the CAN frame,

« in byte 6, the three most significant bits are used to transmit the frame counter.

b

Edit

|'+€ Edit CAMbus Export
&dH e
Name: x_exporti
CANbus: CANZ D (hex): 00123 * Standard ~ DLC: 8 =
Transmit mode: Cycle ~ Frequency [Hz]: 10 = CAN2 band usage: 10/500 frames
Endian: BIG ~ Tacounter custom - Start 0 End: 7 =
Channel #0: 8-bit unsigned e n_channell *1 e
Channel #1: 8-bit unsigned ~ n_channell "1 ~
Channel #2: 8-bit unsigned ~ n_channel2 * -
Channel #3: 8-bit unsigned ~ n_channel3 * w
Channel #4: 8-bit unsigned ~ n_channeld * e
Channel #5: 8-bit unsigned « n_channel3 * ~
Channel #&: 16-bit checksum - %1
8-bit unsigned - i *1

oK

Save .CANX File

Cancel

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later

16/22

ECUMASTER How-to Calculate CAN Checksums in PMU

« The first required operation is:

f
Action: add (+) v

Operation: sum of data bytes &

oK Cancel

After this operation, the accumulator value is:
acc = byte0 + byte1 + byte2 + byte3 + byte4 + byte5

* The next required operation is:
f
Action: add (+) v
Operation: CAN ID shift right by arg ~

a

CANID >> 2 =

OK Cancel
After this operation, the accumulator value is:
acc = (byte0 + byte1 + byte2 + byte3 + byte4 + byte5) + (CAN ID / 4)

* Next, the counter value is multiplied using a bit shift operation.

f
Action: add (+) v
Operation: counter shift left by arg ~

£y
Counter << 2 =

oK Cancel

The accumulator value after this operation is:
acc = (byte0 + byte1 + byte2 + byte3 + byte4 + byte5) + (CAN ID / 4) + (counter * 4)

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 17/22

ECUMASTER

How-to Calculate CAN Checksums in PMU

 The checksum length is 9 bits, therefore the mask used for masking the accumulator is

Ox1FF (binary: 0001 1111 1111).

f Edit checksum slot

Action: add (+)

e

Operation: counter shift left by arg

Counter <=

13

OK

Cancel

« Finally, the counter value must be placed in the three most significant bits of the checksum

to meet the original requirement: “In byte 6, the three most significant bits are used to

transmit the frame counter.”

Final result:

Edit checksum X
acc=0
acc = acc + sum of data bytes Gad
acc = acc + CAN ID(0x123) shift right by (=) 2
acc = acc + counter shift left by (<<) 2 DElete
acc = acc & (0x01FF) .
acc = acc + counter shift left by (<<) 13 Edit
Move up
Move down
Edit table
Delete all
checksum = acc
QK Cancel
The layout of the CAN frame prepared in this way is shown below.
Channels: BYTE BITS
7 6 5 4 3 2 1 0
7 0
n_channel0 0 MSB e 2 4 3 2 ! LSB
15 8
14 13 12 11 10 Cl
n_channell 1 MSB LSB
_ _
31 24
30 29 28 27 26 25
n_channel3 3 MSB LSB
39 32
n_channel4 4 MSB 28 37 26 35 4 > LSB
47 40
46 45 44 43 42 41
n_channel5 5 MSB LSB
55 53 48
txCounter 6 MSB >4 LSB 2 °1 >0 9 MSB
56
63 62 61 60 59 58 57
checksum 7 LSB

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later

18/22

ECUMASTER How-to Calculate CAN Checksums in PMU

Example 3 — Checksum Creation

The expected CRC-8 checksum with polynomial 0x1D and initial value 0x33 is placed in byte 0
of the CAN frame. Byte 1 contains the transmitted frame counter, counting in the range from 0
to 15 (4-bit counter).

The total frame length is 4 bytes.

b+ Edit CANbus Export X
Gd e
Name: x_export2
CANbus: CAN2 ~ ID (hex): 0x345| 2 Standard - DLC 4 =
Transmit mode: Cycle ~ Frequency [Hz]: 1 : CAN2 band usage: 4/500 frames
Endian: BIG ~ Tx counter: 4-bit v Start: 0 End: 15
Channel #0: 8-bit checksum v~ - f*1 Edit
Channel #1: 8-bit unsigned v~ x_export2.txCounter - [1*1 v
Channel #2: 8-bitunsigned ~ n_channel0 - (™1 v
Channel #3: 8-bit unsigned v~ n_channell - %1 v
1-bit unsigned
1-bit unsigned
1-bit unsigned
1-bit unsigned

Save .CANX File

oK Cancel

Only one operation is required to calculate this checksum.

f
Action: add (+) w
Operation: crcd of data bytes 2
Poly 0x1D =
Seed (%33 =
Final xor 0x00 =

Reflection in\out [

oK Cancel

The CRC-8 checksum is calculated from three bytes: byte1, byte2, and byte3.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 19/22

Edit checksum
acc=0
acc = acc + crcd of data bytes, Add
Delete
Edit
Mowve up
Mowve down
Edit table
Delete all
checksum = acc
Cancel
The resulting CAN frame layout is shown below.
Channels: BYTE BITS
7 6 5 2

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later

20/22

ECUMASTER How-to Calculate CAN Checksums in PMU

Example 4 — Checksum Creation

The expected checksum complies with the CRC-8/AUTOSAR algorithm
(poly = 0x2F, seed = OxFF, finalXor = OxFF),

with an additional byte taken from the lookup table.

The checksum is calculated from eight bytes, where the eighth byte comes from the lookup table:
CRC-8(byte0, byte1, byte2, byte3, byte4, byte5, byte6, lookupTableValue)
To calculate such a checksum, two operations are required.

* First step

Action: add (+) ~
Operation: crc8 of data bytes &

Poly x2F

Seed OxFF

Final xor 000

Reflection in\out [

OK Cancel

In the first step, the CRC-8 checksum is calculated for bytes byte0O—byte6.

Since the additional eighth byte from the lookup table is not yet included, the finalXor
parameter is not applied and is set to 0x00.

The obtained result is added to the accumulator.

« Second step:

Action: apply/set(=) i
Operation: cre8 of table val(seed: ac v

Poly Ox2F

4r 4>

Final xor OxFF

Reflection in\out [

OK Cancel

In the second step, the CRC-8 checksum is calculated for the missing byte taken from the
lookup table.

The current accumulator value (acc) is used as the initial value (seed).

Finally, a Final xor operation with the value OxFF is performed, in accordance with the CRC-8/
AUTOSAR algorithm.

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later 21/22

ECUMASTER

How-to Calculate CAN Checksums in PMU

acc=0 Add
acc = acc + crcB of data bytes, p=(x2F, s=0xFF, fxor=0:00
acc = crcB of lookup table value, p=(0x2F), s=acc, fxor=(0xFF}
Delete
Edit
Mowve up
Move down
Edit table
Delete all
checksum = acc
oK Cancel

3. Document history

Version

Date

Changes

1.0

2026.01.13

Initial release

©Ecumaster | How-to | Published on: 13 January 2026 | Document version: 1.0 | Software version: 120.0 or later

22/22

	How-to Calculate CAN Checksums in PMU
	1. Description
	2. Examples
	3. Document history

