

Ecumaster Gear Display

Manual

Revision 4.0

(Firmware 4.x)

1 Device description

Device is used to display gear information and shift light to driver. Gear, RPM, Brightness and Shift light can be read from CAN bus or from built in analog and digital inputs. Device sends gear and RPM information through CAN-bus using Export ID.

- Voltage range: 6V 24V (12V automotive installations)
- Analog input: 0-5V
- Digital input: TTL 0-5V (VR sensor tolerant up to 100V), 0.1Hz-50kHz, rising or falling edge

2 Configuration

2.1 RPM settings

When the RPM source is CAN

RPM source	CAN				
RPM input CAN ID	CAN-bus frame defined via ID				
Byte position	Value must be between 0 and 7				
Num bytes	1 byte / 2 bytes (8 bit / 16 bit) - number width				
<i>Endian</i> (Only for <i>2 bytes</i>)	<i>big endian / little endian</i> - i.e. the "sequence" of bytes for 16-digit numbers. It shows how a number stored in two consecutive bytes is to be interpreted. E.g. numbers $0x12$, $0x34$ can be interpreted as $0x1234$ for the <i>big endian</i> or $0x3412$ for the <i>little endian</i>				
Divider	For scaling the value				
Multiplier	For scaling the value				

When the RPM source is "CAN–OBD" default settings for ODB II are used.

When the RPM source is FREQ

RPM source	FREQ – RPM is read from digital frequency input				
<i>Signal edge Falling / Rising</i> - Choose signal edge that has faster passing through 2.5 threshold					
<i>Teeth per 720</i> ° (one full engine cycle – 2 revolutions)	Enter here number of digital signals per engine cycle. If you have trigger wheel with missing teeth, enter number EXCLUDING missing teeth. For example for $60 - 2$ wheel enter "2*($60-2$) = 116"				

2.2 Gear settings

When the Gear source is CAN

Gear source	CAN			
Gear input CAN ID	CAN-bus frame defined via ID			
Byte position	Value must be between 0 and 7			
Num bytes	1 byte / 2 bytes			
<i>Endian</i> (Only for 2 bytes)	<i>big endian / little endian</i> - i.e. the "sequence" of bytes for 16-digit numbers. It shows how a number stored in two consecutive bytes is to be interpreted. E.g. numbers $0x12$, $0x34$ can be interpreted as $0x1234$ for the <i>big endian</i> or $0x3412$ for the <i>little endian</i>			

Туре	<i>signed / unsigned - signed</i> is a number with a sign (it can receive positive and negative values, as well as zero). An example of such value is the value from the cooling liquid temperature sensor. <i>Unsigned</i> – numbers zero and above. For example engine speed (RPM)				
Extract bitfield	take only a part of an 8- or 16-bit number, (for example, to check the setting of a bit of a 0x80 mask the following settings should be used: B count: 1, Bit position: 7)				
Bit count	Value must be between 1 and 16				
Bit position	Value must be between 0 and 15				
Offset					
Park value	In decimal notation				
Revers value	In decimal notation				
Neutral value	In decimal notation				

Example 1

Below is the gear data. We will need to read 1 byte, signed. The signal are on CAN ID 0x400.

Gear settings:

Gear input CAN ID

Gear source

Byte position

Extract bitfield

Num bytes

Туре

Offset

Park value

Reverse value

Neutral value

CAN

0

1

 \square

0

-2

-1

0

Signed

0x400 Standard

Reverse- FF (Reverse value in decimal is -1)

Neutral- 00

1st Gear- 01

2nd Gear- 02

3rd Gear- 03

4th Gear-04

5th Gear- 05

6th Gear-06

7th Gear-07

Example 2

Below is the gear data. We will need to read 1 byte, unsigned, extract 4 bits, starting from bit 0-th. The signal are on CAN ID 0x400.

Reverse- 2F	(0010 1111)
Neutral- 00	(0000 0000)
1st Gear-11	(0001 0001)
2nd Gear- 1 2	(0001 0010)
3rd Gear- 1 3	(0001 0011)
4th Gear-14	(0001 0100)
5th Gear- 15	(0001 0101)
6th Gear- 1 6	(0001 0110)
7th Gear- 17	(0001 0111)

Reverse value will be 0x0F(15 - in decimal)notation).

Gear settings:	
Gear source	CAN
Gear input CAN ID	0x400 Standard
Byte position	0
Num bytes	1
Туре	Unsigned
Extract bitfield	
Bit count	4
Bit position	0
Offset	0
Park value	10
Reverse value	15
Neutral value	0

Example 3

Below is the Ford F150 data that was read with the Light Client. All The signals are on Can ID 0x171.

 Park A5 00 A0 00 00 00 00 00 00

 Reverse A5 20 A0 00 00 00 00 00 00

 Neutral 15 40 A0 00 00 00 00 00 00

 1st Gear 15 80 A0 00 00 00 00 00 00

 2nd Gear 25 80 A0 00 00 00 00 00 00

 3rd Gear 35 80 A0 00 00 00 00 00 00

 4th Gear 45 80 A0 00 00 00 00 00 00

 5th Gear 55 80 A0 00 00 00 00 00

 6th Gear 55 80 A0 00 00 00 00 00

 7th Gear 75 80 A0 00 00 00 00 00

 8th Gear 85 80 A0 00 00 00 00 00

 9th Gear 95 80 A0 00 00 00 00

First nibble from the left is gear number. So some bit extraction is needed. We will need to read 2 byte little endian (16 bits). Extract 11 bits, starting from bit 4-th.

00 A5 – for park	(0000 0000 1010 0101)
20 A5 – for reverse	(0010 0000 1010 0101)
40 15 – for neutral	(0 100 0000 0001 0101)
80 15 – for 1st Gear	(1 000 0000 0001 0101)
80 25 - for 2nd Gear,	(1 000 0000 0010 0101)
80 3 5 – for 3rd Gear	(1 000 0000 0011 0101)
80 4 5 – for 4th Gear	(1 000 0000 0100 0101)
80 5 5 – for 5th Gear	(1 000 0000 0101 0101)
80 6 5 – for 6th Gear	(+000 0000 0110 0101)
80 7 5 – for 7th Gear	(+000 0000 0111 0101)
80 8 5 – for 8th Gear	(1 000 0000 1000 0101)
80 9 5 – for 9th Gear	(1 000 0000 1001 0101)

Gear settings:	
Gear source	CAN
Gear input CAN ID	0x171 Standard
Byte position	0
Num bytes	2
Endian	Little endian
Туре	Unsigned
Extract bitfield	✓
Bit count	11
Bit position	4
Offset	0
Park value	10
Reverse value	522
Neutral value	1025

Park value will be 0x00A (10 - in decimal notation), reverse value 0x20A (522) and neutral value 0x401 (1025).

When the Gear source is AIN

Gear source	AIN - analog input – gear sensor calibration with 9 position Voltage table. Current voltage is visable in Channels log			
Offset				
Revers				
Neutral	This section contains voltage values for gear reading from analog input.			
# (1-7)	Gear with voltage closest to analog input voltage is set.			

2.3 Shift light

LED # (1-3) color	color on # shift light led		
LED # (1-3) RPMLEDs are lit based on RPM thresholds			
ALL RED RPM threshold for overriding all LEDs to red color			
BLINK RPM	threshold for all LED blinking		

2.4 Brightness

LED	Brightness settings for Shift Light LEDs. Values from 0 - 100
Gear	Brightness settings for Segment display. Values from 0 - 100

Device has brightness limit in case of overheating. Brightness is limited linearly from 100@40°C to 0@80°C.

Temperature reading is only for overheat protection. Precision is +- 10°C

2.5 Export data

Channels are the data values sent over CAN-bus. Channels are sent as raw values, which means that obtaining values with correct units requires some calculations.

 $Value[unit] = \frac{Value[raw] * Multiplier}{Divider} + Offset$

The table below describes how each channel is positioned inside CAN frame and how to obtain the correct value.

Byte (bit)	Channel	Data type	Endian	Range	Multiplier	Divider	Offset	Unit
Export CAN	Export CAN ID+0 (default: 0x6A4)							
01	ain	16bit unsigned	big	0 - 20000	1	1	0	mV
23	engine speed	16bit unsigned	big	0 – 20000	1	1	0	RPM
45	temperature	16bit signed	big	-50.0 - 200.0	1	10	0	°C
6	gear number	8bit signed		-128 - 127	1	1	0	
7	heartbeat	8bit unsigned		0 - 255	1	1	0	

Ecumaster CAN profile description

3 Pinout

- 1 V (6V 24V)
- 2 GND
- 3 AIN Analog input
- 4 FREQ Frequency input
- 5 CAN low
- 6 CAN high

4 Dimensions

5 Revision history

Revision	Date	Changes
0.2	14.06.2019	Initial revision
4.0	13.01.2023	Clarified that the device only works in 12 V installations Updated to version 4.0